Last updated: 2025-07-14

Checks: 6 1

Knit directory: LNdevMouse24.2/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250625) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 89c3497. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store

Unstaged changes:
    Modified:   analysis/adult_mLN_iLN.Rmd
    Modified:   analysis/adult_mLN_iLN2.Rmd
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/adult_mLN_iLN2.Rmd) and HTML (docs/adult_mLN_iLN2.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 0ff885c angeldemartin 2025-07-11 july11

load packages

library(ExploreSCdataSeurat3)
library(runSeurat3)
library(Seurat)
library(ggpubr)
library(pheatmap)
library(SingleCellExperiment)
library(dplyr)
library(tidyverse)
library(viridis)
library(muscat)
library(circlize)
library(destiny)
library(scater)
library(metap)
library(multtest)
library(clusterProfiler)
library(org.Hs.eg.db)
library(msigdbr)
library(enrichplot)
library(DOSE)
library(grid)
library(gridExtra)
library(ggupset)
library(VennDiagram)
library(NCmisc)
library(here)

load int object adult

basedir <- here()
fileNam <- paste0(basedir, "/data/LNmLToRev_adultonly_seurat.integrated.rds")
seuratA.int <- readRDS(fileNam)

set color vectors

colLab <- c("#42a071", "#900C3F","#b66e8d", "#61a4ba", "#424671", "#003C67FF",
            "#e3953d", "#714542", "#b6856e")

names(colLab) <- c("FDC/MRC", "TRC", "TBRC", "MedRC/IFRC", "MedRC" , "actMedRC",
                   "PRC", "Pi16+RC", "VSMC")

coltimepoint <- c("#440154FF", "#3B528BFF", "#21908CFF", "#5DC863FF")
names(coltimepoint) <- c("E18", "P7", "3w", "8w")

collocation <- c("#61baba", "#ba6161")
names(collocation) <- c("iLN", "mLN")

colLoc <- c("#61baba", "#ba6161")
names(colLoc) <- unique(seuratA.int$location)

umap label

DimPlot(seuratA.int, reduction = "umap", group.by = "label", cols = colLab)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

counts

knitr::kable(table(seuratA.int$label, seuratA.int$location))
iLN mLN
actMedRC 2592 1428
FDC/MRC 449 843
MedRC 1960 411
MedRC/IFRC 2660 2208
Pi16+RC 46 554
PRC 849 1343
TBRC 2042 1799
TRC 1611 1228
VSMC 138 127
knitr::kable(table(seuratA.int$location))
Var1 Freq
iLN 12347
mLN 9941
seuratSub <- subset(seuratA.int, Rosa26eyfp.Rosa26eyfp>0)
eyfpPos <- colnames(seuratSub)

seuratA.int$EYFP <-"neg"
seuratA.int$EYFP[which(colnames(seuratA.int)%in%eyfpPos)] <- "pos"
table(seuratA.int$dataset, seuratA.int$EYFP)
                                                   
                                                     neg  pos
  380131_11-11_20250305_Mu_Cxcl13EYFP_Adult_pLN_FRC 1875 3378
  380131_12-12_20250305_Mu_Cxcl13EYFP_Adult_mLN_FRC 2634 3785
  382581_08-8_20250320_Mu_Cxcl13EYFP_Adult_pLN_FRC  2970 4124
  382581_09-9_20250320_Mu_Cxcl13EYFP_Adult_mLN_FRC   848 2674
knitr::kable(table( seuratA.int$label, seuratA.int$EYFP))
neg pos
actMedRC 1410 2610
FDC/MRC 301 991
MedRC 828 1543
MedRC/IFRC 2051 2817
Pi16+RC 329 271
PRC 1181 1011
TBRC 1280 2561
TRC 774 2065
VSMC 173 92
## relative abundance per location
clustCond <- data.frame(table(seuratA.int$location, seuratA.int$label))
colnames(clustCond) <- c("location", "intCluster", "cnt")
condTot <- data.frame(table(seuratA.int$location))
colnames(condTot) <- c("location", "tot")
colPaldat <- data.frame(col=colLab) %>%
  rownames_to_column(var = "intCluster")
clustDat2 <- clustCond %>%  left_join(., condTot, by = "location") %>% 
  mutate(relAb = cnt/tot * 100) %>%
  left_join(., colPaldat, by = "intCluster")

knitr::kable(clustDat2)
location intCluster cnt tot relAb col
iLN actMedRC 2592 12347 20.9929538 #003C67FF
mLN actMedRC 1428 9941 14.3647520 #003C67FF
iLN FDC/MRC 449 12347 3.6365109 #42a071
mLN FDC/MRC 843 9941 8.4800322 #42a071
iLN MedRC 1960 12347 15.8743014 #424671
mLN MedRC 411 9941 4.1343929 #424671
iLN MedRC/IFRC 2660 12347 21.5436948 #61a4ba
mLN MedRC/IFRC 2208 9941 22.2110452 #61a4ba
iLN Pi16+RC 46 12347 0.3725601 #714542
mLN Pi16+RC 554 9941 5.5728800 #714542
iLN PRC 849 12347 6.8761643 #e3953d
mLN PRC 1343 9941 13.5097073 #e3953d
iLN TBRC 2042 12347 16.5384304 #b66e8d
mLN TBRC 1799 9941 18.0967709 #b66e8d
iLN TRC 1611 12347 13.0477039 #900C3F
mLN TRC 1228 9941 12.3528820 #900C3F
iLN VSMC 138 12347 1.1176804 #b6856e
mLN VSMC 127 9941 1.2775375 #b6856e

relative subset abundance

lapply(names(colLoc), function(co){
  clustDat2sel <- clustDat2 %>% filter(location==co)
  pie(clustDat2sel$relAb,
      labels = clustDat2sel$intCluster,
      col = clustDat2sel$col,
      main = paste0(co))
})

[[1]]
NULL

[[2]]
NULL

fraction EYFP+

across all

## across all
eyfpCnt <- data.frame(table(seuratA.int$label, seuratA.int$EYFP)) %>%
  spread(.,Var2 , Freq) %>% mutate(tot=pos+neg) %>% 
  mutate(freqPos=pos*100/tot) %>% mutate(freqNeg=neg*100/tot) 

eyfpCntDat <- eyfpCnt %>% dplyr::select(Var1, freqPos, freqNeg) %>% 
  gather(., eyfp, freq, freqPos:freqNeg)

p <- ggpubr::ggbarplot(eyfpCntDat, x="Var1", y="freq", fill="eyfp",
                  palette = c("#9d9f9e","#09983f"),
                  order = rev(names(colLab)),
                  xlab = "", ylab = "Frequency",
                  orientation = "horizontal") +
  theme(legend.position = "right")
p

individual LNs

LNvec <- unique(seuratA.int$location)

lapply(LNvec, function(ln){
  seuratSub <- subset(seuratA.int, location== ln)
  eyfpCnt <- data.frame(table(seuratSub$label, seuratSub$EYFP)) %>%
  spread(.,Var2 , Freq) %>% mutate(tot=pos+neg) %>% 
  mutate(freqPos=pos*100/tot) %>% mutate(freqNeg=neg*100/tot) 

  eyfpCntDat <- eyfpCnt %>% dplyr::select(Var1, freqPos, freqNeg) %>% 
    gather(., eyfp, freq, freqPos:freqNeg)

  p <- ggpubr::ggbarplot(eyfpCntDat, x="Var1", y="freq", fill="eyfp",
                  palette = c("#9d9f9e","#09983f"),
                  order = rev(names(colLab)),
                  xlab = "", ylab = "Frequency",
                  orientation = "horizontal") +
    theme(legend.position = "right") +
    ggtitle(paste0("Fraction EYFP+ cells - ", ln))
  p

})
[[1]]


[[2]]

avgHeatmap <- function(seurat, selGenes, colVecIdent, colVecCond=NULL,
                       ordVec=NULL, gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                       cr=FALSE, condCol=FALSE){
  
  selGenes <- selGenes$gene
  
  ## assay data
  clusterAssigned <- as.data.frame(Idents(seurat)) %>%
  dplyr::mutate(cell=rownames(.))
  colnames(clusterAssigned)[1] <- "ident"
  seuratDat <- GetAssayData(seurat)
  
  ## genes of interest
  genes <- data.frame(gene=rownames(seurat)) %>% 
    mutate(geneID=gsub("^.*\\.", "", gene)) %>% filter(geneID %in% selGenes)

  ## matrix with averaged cnts per ident
  logNormExpres <- as.data.frame(t(as.matrix(
    seuratDat[which(rownames(seuratDat) %in% genes$gene),])))
  logNormExpres <- logNormExpres %>% dplyr::mutate(cell=rownames(.)) %>%
    dplyr::left_join(.,clusterAssigned, by=c("cell")) %>%
    dplyr::select(-cell) %>% dplyr::group_by(ident) %>%
    dplyr::summarise_all(mean)
  logNormExpresMa <- logNormExpres %>% dplyr::select(-ident) %>% as.matrix()
  rownames(logNormExpresMa) <- logNormExpres$ident
  logNormExpresMa <- t(logNormExpresMa)
  rownames(logNormExpresMa) <- gsub("^.*?\\.","",rownames(logNormExpresMa))
  
  ## remove genes if they are all the same in all groups
  ind <- apply(logNormExpresMa, 1, sd) == 0
  logNormExpresMa <- logNormExpresMa[!ind,]
  genes <- genes[!ind,]

  ## color columns according to cluster
  annotation_col <- as.data.frame(gsub("(^.*?_)","",
                                       colnames(logNormExpresMa)))%>%
    dplyr::mutate(celltype=gsub("(_.*$)","",colnames(logNormExpresMa)))
  colnames(annotation_col)[1] <- "col1"
  annotation_col <- annotation_col %>%
    dplyr::mutate(cond = gsub(".*_","",col1)) %>%
    dplyr::select(cond, celltype)
  rownames(annotation_col) <- colnames(logNormExpresMa) 

  ann_colors = list(
      cond = colVecCond,
      celltype=colVecIdent)
  if(is.null(ann_colors$cond)){
    annotation_col$cond <- NULL
  }
  
  ## adjust order
  logNormExpresMa <- logNormExpresMa[selGenes,]
  if(is.null(ordVec)){
    ordVec <- levels(seurat)
  }
  logNormExpresMa <- logNormExpresMa[,ordVec]

  ## scaled row-wise
  pheatmap(logNormExpresMa, scale="row" ,treeheight_row = 0, cluster_rows = cr, 
         cluster_cols = cc,
         color = colorRampPalette(c("#2166AC", "#F7F7F7", "#B2182B"))(50),
         annotation_col = annotation_col, cellwidth=15, cellheight=10,
         annotation_colors = ann_colors, gaps_row = gapVecR, gaps_col = gapVecC)
}

vis FRC marker

avg heatmap

seurat_markers <- data.frame(gene=c("Fcgr2b","Fcer2a","Cr2","Cxcl13",
                                    "Slc7a11", "Ccl19", 
                                    "Ccl21a", "Fmod", "Grem1", "Bmp4",
                                    "Tnfsf11", "Fbn2",
                                    "Pltp" ,"C1rb", "Lepr", "Ptn",
                                     "Nr4a1", "Cxcl10", "Cxcl9", 
                                    "F3", "Fbln1", "Gdf10", "Adamtsl1", 
                                    "Col15a1",  "Cd34",
                                    "Igfbp6", "Pi16", "Thy1", "Dpp4", "Sema3c", 
                                    "Acta2", "Myh11", "Mcam", "Itga7", "Esam", "Rgs4"
                                    ))

genes <- data.frame(geneID=rownames(seuratA.int)) %>%
  mutate(gene=gsub(".*\\.", "",  geneID)) 

markerAll <- seurat_markers %>% left_join(., genes, by="gene")

ordVec <- names(colLab)
Idents(seuratA.int) <- seuratA.int$label
pOut <- avgHeatmap(seurat = seuratA.int, selGenes = markerAll,
                  colVecIdent = colLab, 
                  ordVec=ordVec,
                  gapVecR=NULL, gapVecC=NULL,cc=F,
                  cr=F, condCol=F)

dotplot

## Dotplot all
seuratA.int$label <- factor(seuratA.int$label, levels = names(colLab))
Idents(seuratA.int) <- seuratA.int$label

DotPlot(seuratA.int, assay="RNA", features = rev(markerAll$geneID), scale =T,
        cluster.idents = F) +
  scale_color_viridis_c() +
  coord_flip() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
  scale_x_discrete(breaks=rev(markerAll$geneID), labels=rev(markerAll$gene)) +
  xlab("") + ylab("")

session info

date()
[1] "Mon Jul 14 16:20:46 2025"
sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Ventura 13.7.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] here_1.0.1                  NCmisc_1.2.0                VennDiagram_1.7.3          
 [4] futile.logger_1.4.3         ggupset_0.4.1               gridExtra_2.3              
 [7] DOSE_3.30.5                 enrichplot_1.24.4           msigdbr_24.1.0             
[10] org.Hs.eg.db_3.19.1         AnnotationDbi_1.66.0        clusterProfiler_4.12.6     
[13] multtest_2.60.0             metap_1.12                  scater_1.32.1              
[16] scuttle_1.14.0              destiny_3.18.0              circlize_0.4.16            
[19] muscat_1.18.0               viridis_0.6.5               viridisLite_0.4.2          
[22] lubridate_1.9.4             forcats_1.0.0               stringr_1.5.1              
[25] purrr_1.0.4                 readr_2.1.5                 tidyr_1.3.1                
[28] tibble_3.2.1                tidyverse_2.0.0             dplyr_1.1.4                
[31] SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0 Biobase_2.64.0             
[34] GenomicRanges_1.56.2        GenomeInfoDb_1.40.1         IRanges_2.38.1             
[37] S4Vectors_0.42.1            BiocGenerics_0.50.0         MatrixGenerics_1.16.0      
[40] matrixStats_1.5.0           pheatmap_1.0.13             ggpubr_0.6.0               
[43] ggplot2_3.5.2               Seurat_5.3.0                SeuratObject_5.1.0         
[46] sp_2.2-0                    runSeurat3_0.1.0            ExploreSCdataSeurat3_0.1.0 

loaded via a namespace (and not attached):
  [1] igraph_2.1.4              ica_1.0-3                 plotly_4.10.4            
  [4] Formula_1.2-5             zlibbioc_1.50.0           tidyselect_1.2.1         
  [7] bit_4.6.0                 doParallel_1.0.17         clue_0.3-66              
 [10] lattice_0.22-7            rjson_0.2.23              blob_1.2.4               
 [13] S4Arrays_1.4.1            pbkrtest_0.5.4            parallel_4.4.0           
 [16] png_0.1-8                 plotrix_3.8-4             cli_3.6.5                
 [19] ggplotify_0.1.2           goftest_1.2-3             VIM_6.2.2                
 [22] variancePartition_1.34.0  BiocNeighbors_1.22.0      shadowtext_0.1.4         
 [25] uwot_0.2.3                curl_6.2.3                tidytree_0.4.6           
 [28] mime_0.13                 evaluate_1.0.3            ComplexHeatmap_2.20.0    
 [31] stringi_1.8.7             backports_1.5.0           lmerTest_3.1-3           
 [34] qqconf_1.3.2              httpuv_1.6.16             magrittr_2.0.3           
 [37] rappdirs_0.3.3            splines_4.4.0             ggraph_2.2.1             
 [40] sctransform_0.4.2         ggbeeswarm_0.7.2          DBI_1.2.3                
 [43] jquerylib_0.1.4           smoother_1.3              withr_3.0.2              
 [46] git2r_0.36.2              corpcor_1.6.10            reformulas_0.4.1         
 [49] class_7.3-23              rprojroot_2.0.4           lmtest_0.9-40            
 [52] tidygraph_1.3.1           formatR_1.14              colourpicker_1.3.0       
 [55] htmlwidgets_1.6.4         fs_1.6.6                  ggrepel_0.9.6            
 [58] labeling_0.4.3            fANCOVA_0.6-1             SparseArray_1.4.8        
 [61] DESeq2_1.44.0             ranger_0.17.0             DEoptimR_1.1-3-1         
 [64] reticulate_1.42.0         hexbin_1.28.5             zoo_1.8-14               
 [67] XVector_0.44.0            knitr_1.50                ggplot.multistats_1.0.1  
 [70] UCSC.utils_1.0.0          RhpcBLASctl_0.23-42       timechange_0.3.0         
 [73] foreach_1.5.2             patchwork_1.3.0           caTools_1.18.3           
 [76] ggtree_3.12.0             data.table_1.17.4         R.oo_1.27.1              
 [79] RSpectra_0.16-2           irlba_2.3.5.1             gridGraphics_0.5-1       
 [82] fastDummies_1.7.5         lazyeval_0.2.2            yaml_2.3.10              
 [85] survival_3.8-3            scattermore_1.2           crayon_1.5.3             
 [88] RcppAnnoy_0.0.22          RColorBrewer_1.1-3        progressr_0.15.1         
 [91] tweenr_2.0.3              later_1.4.2               ggridges_0.5.6           
 [94] codetools_0.2-20          GlobalOptions_0.1.2       aod_1.3.3                
 [97] KEGGREST_1.44.1           Rtsne_0.17                shape_1.4.6.1            
[100] limma_3.60.6              pkgconfig_2.0.3           TMB_1.9.17               
[103] spatstat.univar_3.1-3     mathjaxr_1.8-0            EnvStats_3.1.0           
[106] aplot_0.2.5               scatterplot3d_0.3-44      ape_5.8-1                
[109] spatstat.sparse_3.1-0     xtable_1.8-4              car_3.1-3                
[112] plyr_1.8.9                httr_1.4.7                rbibutils_2.3            
[115] tools_4.4.0               globals_0.18.0            beeswarm_0.4.0           
[118] broom_1.0.8               nlme_3.1-168              lambda.r_1.2.4           
[121] assertthat_0.2.1          lme4_1.1-37               digest_0.6.37            
[124] numDeriv_2016.8-1.1       Matrix_1.7-3              farver_2.1.2             
[127] tzdb_0.5.0                remaCor_0.0.18            reshape2_1.4.4           
[130] yulab.utils_0.2.0         glue_1.8.0                cachem_1.1.0             
[133] polyclip_1.10-7           generics_0.1.4            Biostrings_2.72.1        
[136] mvtnorm_1.3-3             parallelly_1.45.0         mnormt_2.1.1             
[139] statmod_1.5.0             RcppHNSW_0.6.0            ScaledMatrix_1.12.0      
[142] carData_3.0-5             minqa_1.2.8               pbapply_1.7-2            
[145] httr2_1.1.2               spam_2.11-1               gson_0.1.0               
[148] graphlayouts_1.2.2        gtools_3.9.5              ggsignif_0.6.4           
[151] RcppEigen_0.3.4.0.2       shiny_1.10.0              GenomeInfoDbData_1.2.12  
[154] glmmTMB_1.1.11            R.utils_2.13.0            memoise_2.0.1            
[157] rmarkdown_2.29            scales_1.4.0              R.methodsS3_1.8.2        
[160] future_1.58.0             RANN_2.6.2                Cairo_1.6-2              
[163] spatstat.data_3.1-6       rstudioapi_0.17.1         cluster_2.1.8.1          
[166] whisker_0.4.1             mutoss_0.1-13             spatstat.utils_3.1-4     
[169] hms_1.1.3                 fitdistrplus_1.2-2        cowplot_1.1.3            
[172] colorspace_2.1-1          rlang_1.1.6               DelayedMatrixStats_1.26.0
[175] sparseMatrixStats_1.16.0  xts_0.14.1                dotCall64_1.2            
[178] shinydashboard_0.7.3      ggforce_0.4.2             laeken_0.5.3             
[181] mgcv_1.9-3                xfun_0.52                 e1071_1.7-16             
[184] TH.data_1.1-3             iterators_1.0.14          abind_1.4-8              
[187] GOSemSim_2.30.2           treeio_1.28.0             futile.options_1.0.1     
[190] bitops_1.0-9              Rdpack_2.6.4              promises_1.3.3           
[193] scatterpie_0.2.4          RSQLite_2.4.0             qvalue_2.36.0            
[196] sandwich_3.1-1            fgsea_1.30.0              DelayedArray_0.30.1      
[199] proxy_0.4-27              GO.db_3.19.1              compiler_4.4.0           
[202] prettyunits_1.2.0         boot_1.3-31               beachmat_2.20.0          
[205] listenv_0.9.1             Rcpp_1.0.14               edgeR_4.2.2              
[208] workflowr_1.7.1           BiocSingular_1.20.0       tensor_1.5               
[211] MASS_7.3-65               progress_1.2.3            BiocParallel_1.38.0      
[214] babelgene_22.9            spatstat.random_3.4-1     R6_2.6.1                 
[217] fastmap_1.2.0             multcomp_1.4-28           fastmatch_1.1-6          
[220] rstatix_0.7.2             vipor_0.4.7               TTR_0.24.4               
[223] ROCR_1.0-11               TFisher_0.2.0             rsvd_1.0.5               
[226] vcd_1.4-13                nnet_7.3-20               gtable_0.3.6             
[229] KernSmooth_2.23-26        miniUI_0.1.2              deldir_2.0-4             
[232] htmltools_0.5.8.1         ggthemes_5.1.0            bit64_4.6.0-1            
[235] spatstat.explore_3.4-3    lifecycle_1.0.4           blme_1.0-6               
[238] nloptr_2.2.1              sass_0.4.10               vctrs_0.6.5              
[241] robustbase_0.99-4-1       spatstat.geom_3.4-1       sn_2.1.1                 
[244] ggfun_0.1.8               future.apply_1.11.3       bslib_0.9.0              
[247] pillar_1.10.2             gplots_3.2.0              pcaMethods_1.96.0        
[250] locfit_1.5-9.12           jsonlite_2.0.0            GetoptLong_1.0.5         

sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Ventura 13.7.6

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Zurich
tzcode source: internal

attached base packages:
[1] grid      stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] here_1.0.1                  NCmisc_1.2.0                VennDiagram_1.7.3          
 [4] futile.logger_1.4.3         ggupset_0.4.1               gridExtra_2.3              
 [7] DOSE_3.30.5                 enrichplot_1.24.4           msigdbr_24.1.0             
[10] org.Hs.eg.db_3.19.1         AnnotationDbi_1.66.0        clusterProfiler_4.12.6     
[13] multtest_2.60.0             metap_1.12                  scater_1.32.1              
[16] scuttle_1.14.0              destiny_3.18.0              circlize_0.4.16            
[19] muscat_1.18.0               viridis_0.6.5               viridisLite_0.4.2          
[22] lubridate_1.9.4             forcats_1.0.0               stringr_1.5.1              
[25] purrr_1.0.4                 readr_2.1.5                 tidyr_1.3.1                
[28] tibble_3.2.1                tidyverse_2.0.0             dplyr_1.1.4                
[31] SingleCellExperiment_1.26.0 SummarizedExperiment_1.34.0 Biobase_2.64.0             
[34] GenomicRanges_1.56.2        GenomeInfoDb_1.40.1         IRanges_2.38.1             
[37] S4Vectors_0.42.1            BiocGenerics_0.50.0         MatrixGenerics_1.16.0      
[40] matrixStats_1.5.0           pheatmap_1.0.13             ggpubr_0.6.0               
[43] ggplot2_3.5.2               Seurat_5.3.0                SeuratObject_5.1.0         
[46] sp_2.2-0                    runSeurat3_0.1.0            ExploreSCdataSeurat3_0.1.0 

loaded via a namespace (and not attached):
  [1] igraph_2.1.4              ica_1.0-3                 plotly_4.10.4            
  [4] Formula_1.2-5             zlibbioc_1.50.0           tidyselect_1.2.1         
  [7] bit_4.6.0                 doParallel_1.0.17         clue_0.3-66              
 [10] lattice_0.22-7            rjson_0.2.23              blob_1.2.4               
 [13] S4Arrays_1.4.1            pbkrtest_0.5.4            parallel_4.4.0           
 [16] png_0.1-8                 plotrix_3.8-4             cli_3.6.5                
 [19] ggplotify_0.1.2           goftest_1.2-3             VIM_6.2.2                
 [22] variancePartition_1.34.0  BiocNeighbors_1.22.0      shadowtext_0.1.4         
 [25] uwot_0.2.3                curl_6.2.3                tidytree_0.4.6           
 [28] mime_0.13                 evaluate_1.0.3            ComplexHeatmap_2.20.0    
 [31] stringi_1.8.7             backports_1.5.0           lmerTest_3.1-3           
 [34] qqconf_1.3.2              httpuv_1.6.16             magrittr_2.0.3           
 [37] rappdirs_0.3.3            splines_4.4.0             ggraph_2.2.1             
 [40] sctransform_0.4.2         ggbeeswarm_0.7.2          DBI_1.2.3                
 [43] jquerylib_0.1.4           smoother_1.3              withr_3.0.2              
 [46] git2r_0.36.2              corpcor_1.6.10            reformulas_0.4.1         
 [49] class_7.3-23              rprojroot_2.0.4           lmtest_0.9-40            
 [52] tidygraph_1.3.1           formatR_1.14              colourpicker_1.3.0       
 [55] htmlwidgets_1.6.4         fs_1.6.6                  ggrepel_0.9.6            
 [58] labeling_0.4.3            fANCOVA_0.6-1             SparseArray_1.4.8        
 [61] DESeq2_1.44.0             ranger_0.17.0             DEoptimR_1.1-3-1         
 [64] reticulate_1.42.0         hexbin_1.28.5             zoo_1.8-14               
 [67] XVector_0.44.0            knitr_1.50                ggplot.multistats_1.0.1  
 [70] UCSC.utils_1.0.0          RhpcBLASctl_0.23-42       timechange_0.3.0         
 [73] foreach_1.5.2             patchwork_1.3.0           caTools_1.18.3           
 [76] ggtree_3.12.0             data.table_1.17.4         R.oo_1.27.1              
 [79] RSpectra_0.16-2           irlba_2.3.5.1             gridGraphics_0.5-1       
 [82] fastDummies_1.7.5         lazyeval_0.2.2            yaml_2.3.10              
 [85] survival_3.8-3            scattermore_1.2           crayon_1.5.3             
 [88] RcppAnnoy_0.0.22          RColorBrewer_1.1-3        progressr_0.15.1         
 [91] tweenr_2.0.3              later_1.4.2               ggridges_0.5.6           
 [94] codetools_0.2-20          GlobalOptions_0.1.2       aod_1.3.3                
 [97] KEGGREST_1.44.1           Rtsne_0.17                shape_1.4.6.1            
[100] limma_3.60.6              pkgconfig_2.0.3           TMB_1.9.17               
[103] spatstat.univar_3.1-3     mathjaxr_1.8-0            EnvStats_3.1.0           
[106] aplot_0.2.5               scatterplot3d_0.3-44      ape_5.8-1                
[109] spatstat.sparse_3.1-0     xtable_1.8-4              car_3.1-3                
[112] plyr_1.8.9                httr_1.4.7                rbibutils_2.3            
[115] tools_4.4.0               globals_0.18.0            beeswarm_0.4.0           
[118] broom_1.0.8               nlme_3.1-168              lambda.r_1.2.4           
[121] assertthat_0.2.1          lme4_1.1-37               digest_0.6.37            
[124] numDeriv_2016.8-1.1       Matrix_1.7-3              farver_2.1.2             
[127] tzdb_0.5.0                remaCor_0.0.18            reshape2_1.4.4           
[130] yulab.utils_0.2.0         glue_1.8.0                cachem_1.1.0             
[133] polyclip_1.10-7           generics_0.1.4            Biostrings_2.72.1        
[136] mvtnorm_1.3-3             parallelly_1.45.0         mnormt_2.1.1             
[139] statmod_1.5.0             RcppHNSW_0.6.0            ScaledMatrix_1.12.0      
[142] carData_3.0-5             minqa_1.2.8               pbapply_1.7-2            
[145] httr2_1.1.2               spam_2.11-1               gson_0.1.0               
[148] graphlayouts_1.2.2        gtools_3.9.5              ggsignif_0.6.4           
[151] RcppEigen_0.3.4.0.2       shiny_1.10.0              GenomeInfoDbData_1.2.12  
[154] glmmTMB_1.1.11            R.utils_2.13.0            memoise_2.0.1            
[157] rmarkdown_2.29            scales_1.4.0              R.methodsS3_1.8.2        
[160] future_1.58.0             RANN_2.6.2                Cairo_1.6-2              
[163] spatstat.data_3.1-6       rstudioapi_0.17.1         cluster_2.1.8.1          
[166] whisker_0.4.1             mutoss_0.1-13             spatstat.utils_3.1-4     
[169] hms_1.1.3                 fitdistrplus_1.2-2        cowplot_1.1.3            
[172] colorspace_2.1-1          rlang_1.1.6               DelayedMatrixStats_1.26.0
[175] sparseMatrixStats_1.16.0  xts_0.14.1                dotCall64_1.2            
[178] shinydashboard_0.7.3      ggforce_0.4.2             laeken_0.5.3             
[181] mgcv_1.9-3                xfun_0.52                 e1071_1.7-16             
[184] TH.data_1.1-3             iterators_1.0.14          abind_1.4-8              
[187] GOSemSim_2.30.2           treeio_1.28.0             futile.options_1.0.1     
[190] bitops_1.0-9              Rdpack_2.6.4              promises_1.3.3           
[193] scatterpie_0.2.4          RSQLite_2.4.0             qvalue_2.36.0            
[196] sandwich_3.1-1            fgsea_1.30.0              DelayedArray_0.30.1      
[199] proxy_0.4-27              GO.db_3.19.1              compiler_4.4.0           
[202] prettyunits_1.2.0         boot_1.3-31               beachmat_2.20.0          
[205] listenv_0.9.1             Rcpp_1.0.14               edgeR_4.2.2              
[208] workflowr_1.7.1           BiocSingular_1.20.0       tensor_1.5               
[211] MASS_7.3-65               progress_1.2.3            BiocParallel_1.38.0      
[214] babelgene_22.9            spatstat.random_3.4-1     R6_2.6.1                 
[217] fastmap_1.2.0             multcomp_1.4-28           fastmatch_1.1-6          
[220] rstatix_0.7.2             vipor_0.4.7               TTR_0.24.4               
[223] ROCR_1.0-11               TFisher_0.2.0             rsvd_1.0.5               
[226] vcd_1.4-13                nnet_7.3-20               gtable_0.3.6             
[229] KernSmooth_2.23-26        miniUI_0.1.2              deldir_2.0-4             
[232] htmltools_0.5.8.1         ggthemes_5.1.0            bit64_4.6.0-1            
[235] spatstat.explore_3.4-3    lifecycle_1.0.4           blme_1.0-6               
[238] nloptr_2.2.1              sass_0.4.10               vctrs_0.6.5              
[241] robustbase_0.99-4-1       spatstat.geom_3.4-1       sn_2.1.1                 
[244] ggfun_0.1.8               future.apply_1.11.3       bslib_0.9.0              
[247] pillar_1.10.2             gplots_3.2.0              pcaMethods_1.96.0        
[250] locfit_1.5-9.12           jsonlite_2.0.0            GetoptLong_1.0.5